
1
The VIBRANT Portable Interface Development Library
Jonathan A. Kans, Information Engineering Branch, NCBI, NLM,
NIHVIBRANT is a high-level, multi-platform user interface development library
written in C and distributed as part of the NCBI Software Development ToolKit.
Vibrant acts as an intermediary between an application and the underlying
windowing system toolkit.The philosophy behind Vibrant is that everything in the
published user interface guidelines for the various windowing systems (i.e., the
generic behavior of windows, menus, buttons, etc., to which all programs should
conform) is taken care of automatically, without needing any attention from the
programmer. Vibrant frees the programmer from maintaining resource files,
explicitly specifying the positions of interface objects, and writing an event loop.A
program written with Vibrant calls functions that create windows, menus, and the
various graphical control objects that reside in them. The first parameter is
typically the parent object for that control. The programmer may also write a
"callback" function for a given object. The name of the callback is typically passed
as the last parameter. When the user manipulates the object (and thus changes its
"value"), the callback function is automatically executed.In addition to such
standard interface objects as windows, menus, lists, and text boxes, Vibrant
provides a universal drawing object called a "slate". A slate can contain one or
more "panels". Each panel can have instance-specific callbacks for click, drag,
hold, release, and draw functions. By using Vibrant's portable drawing functions in
panels, an application can present arbitrarily complex drawings in a completely
portable manner. A text document display and a graphical viewer have been
implemented using panels.Although Vibrant is intended to allow biologists to write
programs without becoming experts in any of the native windowing system
toolboxes, it is sufficiently powerful for more complex applications. Entrez, an NCBI
information retrieval program, is written with Vibrant, and is source code-identical
on the Macintosh, PC/Windows, UNIX and VMS machines.

2
Simplifying assumptions central to VibrantThe purpose of Vibrant is to allow
scientists to concentrate on designing and implementing algorithms, and then,
with a minimum of effort, quickly incorporate them into user-friendly programs that
can be run on computers found in molecular biology laboratories.The hierarchical
relationship seen by users (e.g., radio buttons always "belong" to a particular
group, which in turn belongs to a particular window) is explicitly specified when the
programmer creates interface objects. The "parent" object is always created prior
to its "children".The generic behavior and appearance of objects, published in the
user interface guidelines, is handled automatically by Vibrant. This includes
selecting windows, highlighting controls, tabbing between text boxes, and clearing
radio buttons.The specific behavior of a program is centered around "callback"
functions. These can be assigned to any interface object, and are executed when
the user manipulates the object to change its "value".Positions of objects are
calculated by Vibrant, using layout specifications in the program, eliminating the
need to create and maintain resource files. The program can easily alter the
assigned positions of objects, or align multiple objects with one another, when
building complex dialogs.Certain dialog box objects represent program parameters
(e.g., strings, numbers, Boolean toggles, choices from a set). Converting between
the object and the actual parameter value is performed with simple functions (e.g.,
SetValue, GetStatus, SetTitle).Choices from a set are referenced by integer
value. These can be represented by radio buttons in a group, or by items in a
menu choice group, popup list, or scrolling list box. Changing the implementation
requires only changing the names of the function calls and callback parameter
types.Because of the object-oriented internal design of Vibrant, functions used to
manipulate object appearance (e.g., Show, Hide, Enable, Disable, SetTitle,
GetValue) can be applied to any interface object.

3
Solutions to issues of portabilityThe underlying toolkits upon which Vibrant sits
have completely different designs. A number of design decisions, or "tricks", were
needed in Vibrant to allow portable code to be written. Programs written with
Vibrant are source code-identical on the Macintosh, PC/Windows, and UNIX and
VMS machines with X11/Motif.Vibrant objects are variants of "Handle" types. A
handle may really be a pointer, an indirect pointer, or an int, depending upon the
platform. Vibrant declares each object to be a HNDL (near pointer) to a unique
(dummy) C structure. This means that the compiler can detect and warn of an
attempt to place a button in a menu, but will allow a button to be placed in a group
or directly in a window.typedef struct button {
 VoidPtr dummy;
} HNDL ButtoN;typedef struct menu {
 VoidPtr dummy;
} HNDL MenU;typedef struct window {
 VoidPtr dummy;
} HNDL GrouP, HNDL WindoW;By assigning one device context to each parent
window, having child windows use the parent's device context, and keeping track
of the "current" window and device context in static variables, the Windows device
context becomes the functional equivalent of the Macintosh port. This allowed the
creation of the slate, a universal drawing environment, on otherwise very different
graphics systems. Vibrant's drawing functions do not need the current context as
an explicit parameter, even though the underlying Windows toolbox calls do need
to be told which device context to use.On the Macintosh, selection of a font name,
size, and style are independent operations. Under Windows, a different font
descriptor must be created for each combination of name, size, and style. The
portable solution in Vibrant is to create a FonT object that specifies one unique
combination of name, size, and style, and to change fonts on each machine by
calling SelectFont with the desired font object.

4
The structure of a Vibrant programVibrant is written with the NCBI CoreLib, which
provides low-level portable types and functions. The application Main function
(capital M) returns an Int2. (Vibrant contains the C main function.) The only
header that needs to be included is <vibrant.h>, which itself includes <ncbi.h>.
The application does not see any of the low-level toolbox-specific symbols or
functions.The convention for naming Vibrant objects is that the initial and last
letter are capitalized. The "standard" types include BaR, ButtoN, ChoicE, DoC,
GrouP, IcoN, IteM, LisT, MenU, PaneL, PopuP, PrompT, RepeaT, SlatE, SwitcH,
TexT, VieweR, and WindoW. Of these, the icon, repeat, and switch objects
(implemented in the vibextra.c file) provide good examples of how to use slates
to make novel interface objects without needing direct access to the underlying
toolkits.A Vibrant program creates windows, populates them with interface objects,
and then calls ProcessEvents to turn control over to the user. The remainder of
the program resides in the callbacks, which are executed in response to user-
driven events.It is generally most convenient to have a separate routine for
creating the menus, in this case named SetupMenus. The code to create other
interface objects is not shown in this example.#include <vibrant.h>Int2 Main
(void)

{
 WindoW w;

#ifdef WIN_MAC
 SetupMenus (NULL);
#endif
 w = FixedWindow (-50, -33, -10, -10, "Test", NULL);
#ifndef WIN_MAC
 SetupMenus (w);
#endif

 /* Populate the window with interface objects */

 Show (w);
 ProcessEvents ();
 return 0;
}

5
Menu placement and font specification are usually the only cases in which
platform-dependent code must be written. On the Macintosh, the program
typically creates the apple menu, and places the About box item and desk
accessory group in it. The NULL parent specifies that the menu bar is on the
desktop and not in a particular window.static void SetupMenus (WindoW w)

{
 MenU m;

#ifdef WIN_MAC
 m = AppleMenu (NULL);
 CommandItem (m, "About...", AboutProc);
 SeparatorItem (m);
 DeskAccGroup (m);
#endif
 m = PulldownMenu (w, "File");
#ifndef WIN_MAC
 CommandItem (m, "About...", AboutProc);
 SeparatorItem (m);
#endif
 CommandItem (m, "Quit/Q", QuitProc);
}At least one callback should call the QuitProgram function. This will cause the
ProcessEvents loop to be exited, finishing any statements in the remainder of the
Main function. All callbacks are passed the item handle of the manipulated object
as a parameter. It is therefore possible for several objects to be served by a single
callback in some situations.static void QuitProc (IteM i)

{
 QuitProgram ();
}Other important Vibrant or CoreLib functions, several of which will be described
later, will be used in a reasonable number of applications. These include
GetInputFileName and GetOutputFileName for file dialog boxes, GetAppParam and
SetAppParam for configuration file parameters, Metronome for setting an
application timer, and Message and Beep for posting message windows or alerting
the user. The CoreLib provides portable type definitions (e.g., Int2, CharPtr) and
platform symbols (e.g., WIN_MSWIN, WIN_MOTIF), and portable functions for string
manipulation (e.g., StringLen, TO_UPPER), memory allocation (e.g., MemNew,
MemFree), file access (e.g., FileOpen, FileRead), byte stores, error handling, and
date and time display.

6
Vibrant windows and variablesThe remaining sections will give specific examples of
interface object creation and manipulation. The code examples provided were
actually used to produce the figures.In addition to interface objects and the FonT
type, Vibrant provides portable PoinT, RecT, and RegioN types. The rectangular
coordinates of any object in a window (or the window itself) are obtained by calling
ObjectRect. Given a Vibrant object, its immediate parent object is returned by
Parent, and the window that is its ultimate ancestor is returned by
ParentWindow.Global variablesA number of useful global variables are available in
Vibrant. screenRect holds the rectangular coordinates of the computer screen.
systemFont and programFont are predefined font variables. stdLineHeight and
stdCharWidth are constants that refer to dimensions on systemFont. dblClick
and shftKey may be set during list and panel clicks. updateRgn and updateRect
are set in response to panel draw (expose) events.WindowsThe window is the only
Vibrant interface object that does not have a parent object. It is at the top of the
hierarchy. Window creation functions have parameters for the position and size of
the window, a title, a close callback, and (for document windows) a resize
callback.Vibrant provides several different kinds of windows. A document window
can be resized by the user, while a fixed window cannot be.WindoW
DocumentWindow (Int2 left, Int2 top, Int2 width,
 Int2 height, CharPtr title,
 WndActnProc close, WndActnProc resize);WindoW FixedWindow
(Int2 left, Int2 top, Int2 width,
 Int2 height, CharPtr title,
 WndActnProc close);A modal window is used when certain
information must be provided before program execution can proceed, and it blocks
the use of "lower" windows until it is dismissed (by calling Remove).WindoW
ModalWindow (Int2 left, Int2 top, Int2 width,
 Int2 height, WndActnProc close);

7
A floating window stays above all others, but is not considered the active window,
and so does not interfere with the normal operation of other windows. It is useful
for a palette of icon buttons.WindoW FloatingWindow (Int2 left, Int2 top, Int2 width,
 Int2 height, WndActnProc close);Vibrant makes no distinction
between classes of windows in terms of what objects can go in them. (There is no
concept of a dialog window separate from other kinds of windows.) Any object can
go in any window.The window is also the only object that is not shown (made
visible) automatically upon creation. If you don't want to show it right away, but
want to create and populate another window, you should first call RealizeWindow
on the current window.The simplest way of using a window is to ask it to size itself
around its "child" objects by giving negative parameters for the width and height.
When the window is first shown (or realized), the actual size is calculated. If the
left and top parameters are negative, their absolute values are taken as
percentages of remaining screen space (e.g., "-50" specifies the center).The
window drawing contextA given window can be moved to the front by calling
Select. This also makes it the "current" window, i.e., the window in which drawing
will occur. The current window is returned by CurrentWindow, and can be changed
(without bringing it to the front) via UseWindow.The functions SavePort and
RestorePort incorporate these concepts, and are used internally in calls that
change the appearance of objects. This allows a callback triggered by a button in
one window to change the contents of a dialog text box in another window (by
calling SetTitle) without the text unintentionally appearing in the wrong
window.To set the context for slates, the Select function must also be called, since
under Motif each slate is a separate DrawingArea (Xlib Window). Like the Windows
device context, the current Xlib Window (needed as a parameter for some of the
X11 drawing functions) is stored in a static variable. Again, the appearance-
changing functions of standard Vibrant objects (i.e., the internal functions that
implement SetTitle and SetValue for each object) already contain any
necessary code to save and restore the context.

8
Positioning of objectsAutomatic positioning with groupsBy default, an object in a
window is placed below the previous object. The group object allows the program
to control the automatic positioning of objects. (The group also acts as the parent
of a set of radio buttons, and enforces the principle that only one button in a given
set can be selected.)GrouP NormalGroup (GrouP prnt, Int2 width, Int2 height,
 CharPtr title, GrpActnProc actn);GrouP HiddenGroup (GrouP prnt, Int2
width, Int2 height,
 GrpActnProc actn);The width and height parameters of a group
determine the layout of child objects. If the width is positive and the height is 0,
objects are laid out horizontally, and the position "breaks" to the next row after
each set of n objects. If the width is 0 and the height is positive, they are laid out
vertically, and the position "advances" to the next column after n objects.If either
width or height are negative, objects are laid out as above, but their borders are
not aligned with one another. If both width and heigth are 0, successive objects
are placed at the same position. In this case you would typically hide all but one of
the superimposed objects at any given time.The sizes and positions of objects are
automatically adjusted as new objects are added. In the example below, a group is
populated with radio buttons.{
 GrouP g;

 g = NormalGroup (w, 3, 0, "Enzyme Type", ChangeType);
 RadioButton (g, "Hydrolase");
 RadioButton (g, "Isomerase");
 RadioButton (g, "Ligase");
 RadioButton (g, "Lyase");
 RadioButton (g, "Oxidoreductase");
 RadioButton (g, "Transferase");
}Because the width is 3, the fourth button is placed on the second line.

9
The title of the fifth button is longer than previous width of the second column.
When it is added, previous items in the same column expand, items in succeeding
columns move over, and the group enlarges.

The borders between a group and

its objects, and the spacing between internal objects can also be set.
Measurements are in pixels.void SetGroupMargins (GrouP g, Int2 xMargin, Int2
yMargin);void SetGroupSpacing (GrouP g, Int2 xSpacing, Int2 ySpacing);Additional
object alignmentIn most cases placing objects in groups is sufficient to produce
nicely aligned dialog boxes. However, in more complex cases, it is necessary to
adjust the positions after the fact. This is done with the AlignObjects function,
which takes a variable number of arguments.void AlignObjects (Int2 align, ...);The
first argument specifies the kind of alignment. ALIGN_LEFT will align the left
margins of all object parameters to each other. Margins are moved to the
maximum value found in the original objects. ALIGN_RIGHT does the same for
right margins, while ALIGN_JUSTIFY separately aligns both left and right margins.
ALIGN_CENTER will center objects horizontally. There are equivalent values for
vertical alignment.The remaining parameters are Vibrant interface objects (of type
Handle). All objects must be type cast to (HANDLE), which prevents the arguments
from being erroneously promoted to the wrong number of bytes under certain
platforms. The argument list is terminated by NULL.Finally, AlignObjects should
not be called until after the parent groups of its object parameters have been
completely populated.Explicit control over object positions is available, if really
needed.void GetPosition (Handle object, RectPtr rct);void SetPosition (Handle
object, RectPtr rct);

10
The menagerie of Vibrant objectsPush buttons and check boxesThe push button is
used to trigger a callback under user control. It has no persistent value. The
callback is executed when the button is pressed. The DefaultButton is like a push
button, but the callback is also executed when the user presses the Return key.
The check box may take a callback, but its Boolean status may also be tested from
other callbacks with GetStatus.ButtoN PushButton (GrouP prnt, CharPtr title,
BtnActnProc actn);ButtoN DefaultButton (GrouP prnt, CharPtr title, BtnActnProc
actn);ButtoN CheckBox (GrouP prnt, CharPtr title, BtnActnProc actn);The initial
size of the push button is determined by the pixel width of the button title and a
standard button height. The initial size and position may change if the button is in

a group. {

 ButtoN b;
 GrouP g;

 g = HiddenGroup (w, 0, 2, NULL);
 PushButton (g, "Previous", PrevProc);
 b = PushButton (g, "Next", NextProc);
 Disable (b);
}The initial size of the check box, which represents a Boolean toggle, is also
calculated by the pixel width of the title and a standard height.

{

 GrouP g;

 g = NormalGroup (w, 2, 0, "Data Sources", NULL);
 esBtn = CheckBox (g, "Entrez: Sequences", NULL);
 SetStatus (esBtn, TRUE);
 erBtn = CheckBox (g, "Entrez: References", NULL);
}

11
Displaying static prompts (labels)The static prompt takes width and height
parameters in pixels. If the width is 0, then the width of the text string (plus 2
pixels) is used. (This is calculated internally by calling StringWidth after having
called SelectFont on the font parameter.) If the height is 0, then the actual value
is calculated by calling LineHeight. The global variables dialogTextHeight and
popupMenuHeight may be used to center prompts vertically next to dialog text or
popup list objects.PrompT StaticPrompt (GrouP prnt, CharPtr title, Int2 pixwidth,
 Int2 pixheight, FonT font, Char just);The prompt justification
parameter is a character, either 'l', 'c', or 'r', for left-, center-, or right-justified,
respectively. (This convention also applies to the DrawString function that is used
to draw character strings in slates.)Entering and editing text stringsAlthough the
popularity of "point and click" interfaces has reduced the need to remember
arcane acronyms in order to run computer programs, there are still cases where
typing at the keyboard is the most efficient way of entering data. The Vibrant text
object is used in these situations.The DialogText object can contain a single line
of text, with no tabs or returns. If the user presses the tab key while in a dialog
text object, Vibrant will attempt to find and select the next available dialog text.If
multiple lines of text are needed, the ScrollText object may be used. The font
used for scrolling texts can also be specified. The predefined font variable
programFont is a non-proportional font that is useful for displaying program code
or email messages in scrolling texts.A text object can be assigned a callback
function that is triggered whenever the user changes the contents of the object (by
inserting or deleting characters). The contents of the text object can be obtained
with GetTitle, and can be changed under program control with SetTitle.TexT
DialogText (GrouP prnt, CharPtr dfault, Int2 charWidth,
 TxtActnProc actn);TexT ScrollText (GrouP prnt, Int2 width, Int2 height,
FonT font,
 Boolean wrap, TxtActnProc actn);

12
The HiddenText has an additional callback that is triggered when the user presses
the tab key. This object can be used to simulate spreadsheets, where having
multiple dialog texts (and attempting to "scroll" them) would be inefficient. The
hidden text object is usually superimposed over a slate (or the panel-based
document display object).TexT HiddenText (GrouP prnt, CharPtr dfault, Int2
charWidth,
 TxtActnProc actn, TxtActnProc tabProc);Cutting and pasting requires
knowledge of the currently selected text object. The CurrentText function returns
this information. CutText, CopyText, PasteText, and ClearText, which usually
reside in menu command item callbacks, would typically be passed the current
text.The example below demonstrates the use of AlignObjects to align the right
margins of two text objects, even though they are not members of the same group.
The left margins of another two dialog texts are aligned because the pixel widths of
the "Volume" and "Journal" prompt have been explicitly set to be the longest of the
two. The first dialog text is currently selected. At the next key stroke the entire
selection will be deleted and replaced by the character that was typed.

{

 GrouP g
 GrouP h;
 TexT jour;
 TexT pgs;
 TexT vol;
 Int2 wid;

 h = HiddenGroup (w, 0, 2, NULL);
 g = HiddenGroup (h, 2, 0, NULL); SetGroupSpacing (g, 13, 2);
 wid = MAX (StringWidth ("Journal"), StringWidth ("Volume")) + 2;
 StaticPrompt (g, "Journal", wid, dialogTextHeight, NULL, 'l');
 jour = DialogText (g, "J Mol Biol", 5, NULL);
 g = HiddenGroup (h, 4, 0, NULL); SetGroupSpacing (g, 13, 2);
 StaticPrompt (g, "Volume", wid, dialogTextHeight, NULL, 'l');
 vol = DialogText (g, "215", 3, NULL);
 StaticPrompt (g, "Pages", 0, dialogTextHeight, NULL, 'l');
 pgs = DialogText (g, "403-10", 6, NULL);
 AlignObjects (ALIGN_RIGHT, (HANDLE) jour, (HANDLE) pgs, NULL);
 Select (jour);
}

13
Menus and menu itemsA pulldown menu can reside in a window menu bar, or in
the Macintosh desktop menu bar (passing NULL as the parent). SubMenu creates a
menu item that controls a cascading sub menu, and takes a menu as its
parent.MenU PulldownMenu (WindoW prnt, CharPtr title);MenU SubMenu (MenU
prnt, CharPtr title);The CommandItem is the equivalent of a push button, and the
StatusItem is the equivalent of a check box.IteM CommandItem (MenU prnt,
CharPtr title, ItmActnProc actn);IteM StatusItem (MenU prnt, CharPtr title,
ItmActnProc actn);The SeparatorItem places a horizontal bar in the menu. It has
no function, but provides visual separation of unrelated sets of items.void
SeparatorItem (MenU prnt);The menu choice group will be discussed in the next
section. This example shows three StatusItems and two menu ChoiceGroups in

sub menus. {

 ChoicE c;
 IteM i;
 MenU m;
 MenU s

 m = PulldownMenu (w, "Preferences");
 persistItem = StatusItem (m, "Parents Persist", NULL);
 SetStatus (persistItem , TRUE);
 i = StatusItem (m, "Show Sequence", ShowSeqProc);
 SetStatus (i, TRUE);
 timerItem = StatusItem (m, "Use Timer", NULL);
 s = SubMenu (m, "Chars Per Line");
 c = ChoiceGroup (s, ChangeCharsProc);
 ...
}

14
Choices from a setVibrant considers certain objects to represent choices from a
set. The decision of which implementation to use depends upon such factors as
how much "real estate" the object takes up on the window and whether the
number of choices can be very large. In each case a pair of functions is used, one
to create the set, the other to add choices to the set.Menu choice groupThe first
example shows three menu ChoiceGroups, visually delimited by separator items.
Items are entered with the ChoiceItem function.ChoicE ChoiceGroup (MenU prnt,
ChsActnProc actn);IteM ChoiceItem (ChoicE prnt, CharPtr title);

The default value of each independent choice group has

been set to 1 with SetValue. Initially, no choice is checked, and the value is 0.{
 ChoicE c;
 MenU m;

 m = PulldownMenu (w, "Options");
 c = ChoiceGroup (m, ChangeArticle);
 ChoiceItem (c, "MEDLINE Report");
 ChoiceItem (c, "MEDLARS Format");
 ChoiceItem (c, "MEDLINE ASN.1");
 SetValue (c, 1);
 c = ChoiceGroup (m, ChangeReport);
 ...
}

15
Group of radio buttonsThis next example shows a NormalGroup containing several
RadioButtons. A normal group displays a title at the upper left hand corner of its
bounding box. As radio buttons are added, the group adjusts the positions and
widths of the previously-entered buttons so that all items line up nicely. The "4, 0"
specification indicates that the buttons should be added horizontally, with a new
row being used after every four items.ButtoN RadioButton (GrouP prnt, CharPtr

title); As is the

case with the menu choice group, the initial value of the group of radio buttons has
been set with SetValue. A value of 1 specifies that the first button is chosen, while
0 would indicate that no buttons are chosen.static CharPtr divisions [] = {
 "Bacterial", "EST", "Fungal", "Invertebrate",
 "Mammalian", "Patent", "Phage", "Plant",
 "Primate", "Rodent", "Structural RNA",
 "Synthetic DNA", "Unannotated", "Vector",
 "Vertebrate", "Viral", NULL
};{
 GrouP g;
 Int2 i;

 g = NormalGroup (w, 4, 0, "Division", ChangeDivProc);
 for (i = 0; divisions [i] != NULL; i++) {
 RadioButton (g, divisions [i]);
 }
 SetValue (g, 1);
}Groups can contain of any kind of object that a window can have (i.e., all objects
except menus and their choice and item objects), and the group will automatically
align its child objects.While groups can have titles, and menu choice groups can
appear to have titles if they are in sub menus, popup lists and scrolling lists do not
have titles. The static prompt is generally used to label these objects.

16
Popup listThe third example of choices from a set is implemented as a popup list.
This has the advantages of taking up very little "real estate" and of displaying only
the currently-selected value. Unlike items in menus, which can only be viewed by
selecting the menu with the mouse, the popup list is visible in a window. The
popup on the left shows the normal appearance, while the one on the right is being
selected with the mouse.PopuP PopupList (GrouP prnt, Boolean macLike,
PupActnProc actn);void PopupItem (PopuP prnt, CharPtr title);

{

 GrouP h;
 PopuP p;

 h = HiddenGroup (w, 4, 0, NULL);
 SetGroupSpacing (h, 10, 2);
 StaticPrompt (h, "Database", 0, popupMenuHeight, systemFont, 'l');
 p = PopupList (h, TRUE, ChangeDbaseProc);
 PopupItem (p, "MEDLINE");
 PopupItem (p, "Protein");
 PopupItem (p, "Nucleotide");
 SetValue (p, 1);
 StaticPrompt (h, "Field", 0, popupMenuHeight, systemFont, 'l');
 p = PopupList (h, TRUE, ChangeFldProc);
 PopupItem (p, "Abstract or Title");
 PopupItem (p, "MeSH Term");
 ...
 PopupItem (p, "MEDLINE ID");
 SetValue (p, 1);
}As with the menu choice group and the group of radio buttons, the initial values
of the popup lists have been set with SetValue. SetGroupSpacing has been used
to increase the number of pixels between objects in the hidden group to 10 (the
default is 3 horizontally and 2 vertically).

17
Scrolling listThe final example uses a single choice scrolling list. This object is
most appropriate when the number of items can be quite large, or when the
longest text string may be very wide. The width and height of the scrolling list are
specified using the global variables stdCharWidth and stdLineHeight
(precomputed attributes of sysemFont) as coordinates.LisT SingleList (GrouP prnt,
Int2 width,
 Int2 height, LstActnProc actn);void ListItem (GrouP prnt, CharPtr title);

static Boolean ReadProc

(CharPtr term, Int4 special, Int4 total)

{
 ListItem (lst, term);
 return TRUE;
}

{
 GrouP h;

 h = HiddenGroup (w, 0, 2, NULL);
 StaticPrompt (h, "Organism", 0, 0, systemFont, 'c');
 lst = SingleList (h, 20, 6, ChangeLstProc);
 EntrezTermListByTerm (TYP_AA, FLD_ORGN, "Drosophila",
 50, ReadProc, NULL);
 SetValue (lst, 4);
}
It should come as no surprise that SetValue has been used to preselect the fourth
item of the scrolling list.Setting the value of a list will automatically cause it to
scroll so that the current value is visible. The scroll offset can be changed under
program control with SetOffset (list, 0, line). Note that a scroll offset of 0 is
when the first item appears in the first line of the list.

18
Creating novel interface objects with slatesThe slate is used to extend the
repertoire of Vibrant objects by allowing the application to respond directly to
update (expose) and mouse events.Displaying a pictorial iconThe IconButton is a
control that allows display of an application-specified drawing in a window.
Although implemented with a slate, it cannot have scroll bars or extra instance-
specific data.IcoN IconButton (GrouP prnt, Int2 pixwidth, Int2 pixheight,
 IcnActnProc draw, IcnChngProc inval,
 IcnClckProc click, IcnClckProc drag,
 IcnClckProc hold, IcnClckProc release);The icon object can retain an
integer value, a Boolean status, and a text string. These can be obtained and
changed with the usual functions (e.g., SetValue, GetTitle). The application may
change some of these settings at certain times, usually in the callbacks that
respond to mouse events. Changing any of the settings triggers an invalidation
operation. This marks the icon as needing erasure and redrawing at the next
update event.If the inval parameter is NULL, then the entire object rectangle is
invalidated. The application can supply an inval function to be triggered instead, if
it is desired that only certain parts of an icon should be invalidated, to prevent
unwanted flicker when changing the settings. (The application might also prefer to
call ScrollRect instead of InvalRect.)In the example shown below, the icon
button can appear in two states, indicated by the direction of the arrow. Clicking
on the icon and then releasing the mouse within the icon toggles between the two

states. The icon is created with the width and height in pixels, and

with callbacks for drawing, invalidation, and mouse release. The invalidation
callback is used to prevent flicker of the rectangular frame around the arrows. An
icon must have a draw callback in order to be visible. IconButton (w, 32, 22,
DrawIcon, InvalIcon,
 NULL, NULL, NULL, ReleaseIcon);

19
The example draw callback function gets the rectangular coordinates of the icon,
draws (frames) the rectangle, and copies a bitmap into the center of the icon. The
callback determines which bitmap to draw by examining the Boolean status of the
icon.static void DrawIcon (IcoN i)

{
 RecT r;

 ObjectRect (i, &r);
 FrameRect (&r);
 InsetRect (&r, 12, 11);
 if (GetStatus (i)) {
 CopyBits (&r, upArrow);
 } else {
 CopyBits (&r, downArrow);
 }
}The release callback changes the Boolean status of the icon if the mouse was
located within the icon boundaries when the mouse button was released. Setting
the status (or changing the integer value or text string) triggers the invalidation
function, and then forces the resulting update event to be processed
immediately.static void ReleaseIcon (IcoN i, PoinT pt)

{
 RecT r;

 ObjectRect (i, &r);
 if (PtInRect (pt, &r)) {
 SetStatus (i, (Boolean) (! GetStatus (i)));
 }
}The default invalidation routine retrieves the bounding rectangle, expands it by
one pixel, and then invalidates the resulting rectangle. This behavior is overridden
in this example by an invalidation callback, which shrinks the bounding rectangle
by one pixel before invalidation to ensure that the visible rectangle frame does not
flicker.static void InvalIcon (IcoN i, Nlm_Int2 newval, Nlm_Int2 oldval)

{
 RecT r;

 ObjectRect (i, &r);
 InsetRect (&r, 1, 1);
 InvalRect (&r);
}

20
The CopyBits function is used to draw inside panels. The form of the bitmaps is
identical among all platforms. A binary 1 indicates "foreground" color (typically
black) and a binary 0 indicates "background" color (typically white). Vibrant
provides functions to change these colors (e.g., Red, SelectColor). Bitmaps are
displayed using the current drawing "mode", which is either CopyMode, MergeMode,
InvertMode or EraseMode. The current pattern (e.g., Solid, Medium) and line style
(e.g., Solid, Dashed) have no effect on bitmaps.static Uint1 upArrow [] = {
 0x08, 0x1C, 0x3E, 0x7F, 0x1C,
 0x1C, 0x1C, 0x1C, 0x1C, 0x1C
};static Uint1 downArrow [] = {
 0x1C, 0x1C, 0x1C, 0x1C, 0x1C,
 0x1C, 0x7F, 0x3E, 0x1C, 0x08
};Under Windows the bits are inverted before being sent to the low-level BitBlt
function, while under Motif the bytes are flipped (least significant bit becomes
most significant bit) before being sent to XCopyPlane. Vibrant will also
compensate properly if the number of bytes per row is odd, so no extra "padding"
bytes are required.The full spectrum of Vibrant portable drawing functions may be
used in the draw callback.Arbitrary drawing with slates and panelsThe slate allows
an application to present arbitrarily complex drawings in a completely portable
manner. (The icon button, described above, is an example of a general-purpose
graphical object implemented with a slate.) Messages or events that are treated
by other objects at the generic level (i.e., drawing requests, mouse clicks, and key
presses) are passed by slates to application callback functions in a platform-
independent manner.A slate can have one or more panels, and each panel can
have instance-specific callbacks for click, drag, hold, release, and draw functions.
Vibrant provides a variety of drawing procedures that can be used inside panels
regardless of the machine on which the program is running.A panel can be used to
create a new object that solves a general problem (such as display of tabular text,
or display of bitmap icons). Since the slate allows multiple panels, these building
blocks can be combined (even

21
superimposed) to create a complex slate from simpler components. This can be
much more efficient than having to modify (and thus understand) a copy of the
code for each component in order to make a custom object.An even better way of
addressing a general problem, and yet being amenable to customization, is to
allow the application to specify an additional draw callback, sometimes known as a
"hook". The panel draw callback would perform its general drawing functions, then
call the specific function to do any custom drawing. This turns out to be even
easier to use than having multiple, superimposed, independent panels in a
slate.The simplest versions of a slate merges a slate and panel in one object
instance. These include the SimplePanel and the more general AutonomousPanel.
The autonomous panel can have scroll bars, extra instance data, a reset function
to free that data, and the ability to override the Vibrant class functions in order to
allow such functions as SetTitle and GetValue to apply to particular slate/panels
(henceforth called panels).PaneL SimplePanel (GrouP prnt, Int2 pixwidth, Int2
pixheight,
 PnlActnProc draw);PaneL AutonomousPanel (GrouP prnt, Int2
pixwidth, Int2 pixheight,
 PnlActnProc draw, SltScrlProc vscrl,
 SltScrlProc hscrl, Int2 extra,
 PnlActnProc reset, GphPrcsPtr classPtr);SetPanelClick attaches
mouse response callbacks to a panel.void SetPanelClick (PaneL p, PnlClckProc click,
PnlClckProc drag,
 PnlClckProc hold, PnlClckProc release);The click, drag, and release
callbacks can be used to do such things as drawing a "marquee", which consists of
a dotted rectangle containing the the location of the original mouse click and the
current mouse position.Panel callbacks are passed the panel handle and the point
as parameters. For this task, the callbacks must know the first point and the
current point.static PoinT curpnt;
static PoinT fstpnt;

22
The click callback sets the first point and current point to this initial point. It then
draws a (tiny) dotted rectangle around this point.static void ClickProc (PaneL p,
PoinT pt)

{
 fstpnt = pt;
 curpnt = pt;
 CopyMode ();
 CommonFrameProc (p);
}The drag callback sets InvertMode and draws over (thus erasing) the previously-
drawn rectangle. It then updates the current point static variable and draws the
new rectangle.static void DragProc (PaneL p, PoinT pt)

{
 InvertMode ();
 CommonFrameProc (p);
 curpnt = pt;
 CommonFrameProc (p);
}The release callback draws over and erases the last dotted rectangle.static void
ReleaseProc (PaneL p, PoinT pt)

{
 InvertMode ();
 CommonFrameProc (p);
}In this common function that actually does the drawing, the marquee rectangle is
confined to the panel bounding rectangle by finding the intersection (overlap) of
the two rectangles, calculated with the SectRect function.static void
CommonFrameProc (PaneL p)

{
 RecT dr;
 RecT or;
 RecT r;

 Dotted ();
 ObjectRect (p, &or);
 InsetRect (&or, 2, 2);
 LoadRect (&r, fstpnt.x, fstpnt.y, curpnt.x, curpnt.y);
 SectRect (&r, &or, &dr);
 FrameRect (&dr);
}

23
Document display panelThe document object is a (partial) general solution to the
problem of displaying tabular text. While it is too complex to be described in full
detail here, it is built with an autonomous panel, and it does allow "hook" callbacks
for drawing and mouse events, so that it can be customized.The MEDLINE and
sequence report viewers in Entrez are written with the document object. Part of a
sample sequence report is shown below.

Docume

nt types and functions are in the <document.h> header. A DocumentPanel can be
placed in any window or group. The width and height parameters are in pixels, a 4
pixel border is added to each margin, and a vertical scroll bar is automatically
created.DoC DocumentPanel (GrouP prnt, Int2 pixwidth, Int2 pixheight);The
document object is most easily populated by repeated calls to AppendText. This
takes the document, the text string, a paragraph format, a column format array,
and a default font as parameters. Each column has width, font, justification, and
word wrap parameters. Tabs embedded in the text control assignment of subtrings
to particular columns. Existing paragraph items can be replaced, and new items
can be inserted.void AppendText (DoC d, CharPtr text, ParPtr parFmt,
 ColPtr colFmt, FonT font);void ReplaceText (DoC d, Int2 item, CharPtr
text,
 ParPtr parFmt, ColPtr colFmt, FonT font);void InsertText (DoC d, Int2
item, CharPtr text,
 ParPtr parFmt, ColPtr colFmt, FonT font);

24
The above functions are special cases of AppendItem, ReplaceItem, and
InsertItem, respectively. The Text functions take the paragraph text string as a
parameter. The Item functions take a "print function" and a data pointer. The
print function uses the data parameter and returns an allocated string containing
the paragraph text.void AppendItem (DoC d, DocPrntProc proc, Pointer data,
 Boolean docOwnsData, Int2 lines, ParPtr parFmt,
 ColPtr colFmt, FonT font);Paragraph items can also be deleted
dynamically.void DeleteItem (DoC d, Int2 item);The paragraph and column format
shown below specify a blank space between paragraphs, word wrap on both
columns, and a different font in the second column. Column pixel widths are
frequently set dynamically.static ParData parFmt = {TRUE, FALSE, FALSE, FALSE,
FALSE, 0, 0};static ColData colFmt [2] = {
 {0, 0, 15, 0, NULL, 'l', TRUE, FALSE, FALSE, FALSE},
 {0, 0, 63, 0, NULL, 'l', TRUE, FALSE, FALSE, TRUE}
};{
 colFmt [0].pixWidth = 6 * stdCharWidth;
 colFmt [1].pixWidth = 21 * stdCharWidth;
 colFmt [1].font = ParseFont ("Geneva,12 | Helvetica,12");
 AppendText (doc, "Citation\tTanaka K., Nakafuku M.,...\n",
 &parFmt, colFmt, programFont);
}The mouse point can be mapped to a particular item, row, and column, the text in
a given cell (or set of cells) can be obtained, and the program can force the
document paragraph contents and its scroll bar to update after insertion,
replacement, or deletion of paragraphs. The document can also be printed or
saved to a file.void MapDocPoint (DoC d, PoinT pt, Int2Ptr item, Int2Ptr row,
 Int2Ptr col, RectPtr rct);CharPtr GetDocText (DoC d, Int2 item, Int2
row, Int2 col);void UpdateDocument (DoC d, Int2 from, Int2 to);void
AdjustDocScroll (DoC d);

25
Graphical viewer panelThe viewer object is implemented with an autonomous
panel. It allows the creation of a picture, which can be composed of a hierarchy of
"segments". The "primitive" items in segments can be lines or rectangles (which
are measured in "world coordinates"), or annotation items such as text labels, tick
marks, or symbols. An "attribute" item specifies changes to the color, line style,
pixel shading, pen width, and drawing mode of subsequent primitives in a
segment.The viewer was designed to map from world coordinates to "screen
coordinates" by using integer arithmetic. Floating point calculations are not
needed. Its performance is therefore suitable even on slower machines found in
many molecular biology laboratories.A display of feature intervals on the E. coli lac
operon, built with a viewer object using data read from the ASN.1 record on the
Entrez: Sequences disc, is shown below. The lacZ gene has been selected with the

mouse. The

scale was drawn using the "hook" callback, and the application can decide how fine
a scale to display at any given magnification.Use of the viewer requires including
the <picture.h> and <viewer.h> headers. A picture is created as a tree of
segment objects. Picture segments are not Vibrant graphical objects, in that they
cannot be placed into windows, groups, menus, etc., though their philosophy is
very similar to the Vibrant group.SegmenT CreatePicture (void);SegmenT
DeletePicture (SegmenT picture);A segment can be given an integer ID that can
refer to the program object which it represents. It can also be told the maximum
scale factor at which

26
it will be visible (0 means always visible). Given any segment, you can find its
parent segment, and traverse up the hierarchy to the parent picture. The primitive
items in segments can also contain integer IDs.SegmenT CreateSegment
(SegmenT parent, Uint2 segID, Int4 maxScale);SegmenT ParentSegment (SegmenT
segment);Rectangles and lines must specify their full dimensions in "world
coordinates". These items will change size when the picture is scaled in the
viewer. World coordinates are whatever is appropriate to the particular domain.
For molecular sequences, they may be base pairs or residues.PrimitivE
AddRectangle (SegmenT parent, Int4 left, Int4 top,
 Int4 right, Int4 bottom, Int2 arrow,
 Boolean fill, Uint2 primID);PrimitivE AddLine (SegmenT parent,
Int4 pnt1X, Int4 pnt1Y,
 Int4 pnt2X, Int4 pnt2Y, Boolean arrow,
 Uint2 primID);Symbols, bitmaps, markers (tick marks), and text
labels are annotation objects attached to a particular point in world coordinates.
These items always remain the same size. The alignment parameter (e.g.,
UPPER_LEFT, MIDDLE_CENTER) determines which part of the annotation maps to the
point. The orientation parameter (e.g., HORIZ_LEFT, VERT_ABOVE) determines a
more limited orientation for marker lines.PrimitivE AddSymbol (SegmenT parent,
Int4 pntX, Int4 pnty,
 Int2 symbol, Boolean fill, Int2 align,
 Uint2 primID)PrimitivE AddMarker (SegmenT parent, Int4 pntX, Int4
pntY,
 Int2 length, Int2 orient, Uint2 primID);The symbols include a
rectangle, a diamond, an oval, and four orientations of triangle, in empty and filled
varieties. The attribute item changes the color, line style, shading, pen
width and drawing mode for subsequent items within a given segment. The
attributes do not affect subsequent items in any parent segments.PrimitivE
AddAttribute (SegmenT parent, Uint1 flags, Uint1Ptr color,
 Int1 linestyle, Int1 shading, Int1 penwidth,
 Int1 mode);

27
A set of rectangles with various shadings are shown. The final one, with
EMPTY_SHADING, is frames for visibility. A viewer is
created on a window or in a group. A picture is then attached to the viewer. The
viewer is responsible for scaling (zooming) and panning (scrolling) the picture on
the screen.VieweR CreateViewer (GrouP prnt, Int2 width, Int2 height,
 Boolean vscroll, Boolean hscroll);void ResetViewer (VieweR
viewer);VieweR DeleteViewer (VieweR viewer);void AttachPicture (VieweR viewer,
SegmenT picture, Int4 pntX,
 Int4 pntY, Int2 align, Int4 scaleX,
 Int4 scaleY, VwrDrawProc draw));During a click, drag, or release
callback, FindSegment will return the ID of the deepest segment containing an
object in which the mouse resides, the primitive ID if an item is under the mouse,
and the index of the primitive.SegmenT FindSegment (VieweR viewer, PoinT pt,
Uint2Ptr segID,
 Uint2Ptr primID, Uint2Ptr primCt);Given the primitive index, you can
obtain a pointer to the primitive, and use that pointer to highlight the
primitive.PrimitivE GetPrimitive (SegmenT segment, Uint2 primCt);void
HighlightPrimitive (VieweR viewer, SegmenT segment,
 PrimitivE primitive, Int1 highlight);You can also show, hide, or
highlight an entire segment.A pixel position on the screen (such as that returned
by the mouse callbacks) can be interconverted with the position in world
coordinates.void MapWorldToViewer (VieweR viewer, PntInfo pnt, PointPtr pt);void
MapViewerToWorld (VieweR viewer, PoinT pt, PntPtr pnt);

28
Miscellaneous functionsA number of common portable code problems are
addressed either by Vibrant or the CoreLib. These include accessing configuration
files, obtaining file specifications, display of messages and progress monitors, and
dynamic memory allocation.Configuration filesThe CoreLib provides a scheme for
storing and modifying persistent system and application options or settings. It is
modeled on services provided in the Microsoft Windows environment and has been
extended to work on all of the platforms the NCBI toolkit supports. Configuration
files are plain ASCII text files that may be edited by the user or modified by the
program. They are divided into sections, each of which is headed by a section
name enclosed in sequare brackets. Below each section heading is a series of
key=value strings, somewhat analagous to the environment variables that are
used on many platforms. The following is an example of the "ncbi" configuration
file:[NCBI]
ROOT=SEQDATA:
ASNLOAD=genome:ENTREZ:asnload:
DATA=genome:ENTREZ:data:In this example, the ROOT entry refers to the path to
the Entrez: Sequences CD-ROM, the ASNLOAD entry specifies the path to the ASN.1
parse tables (required by the AsnLib functions and all higher-level procedures that
call them), and the DATA entry points to files containing information necessary to
convert biomolecule sequence data into different alphabets (e.g., unpacking the 2-
bit nucleotide code stored on the Entrez CD into standard IUPAC letters).The
location and naming conventions of configuration files depends upon the platform.
On the Macintosh, files are located in the System Folder:Preferences folder and
have a ".cnf" suffix. Under Microsoft Windows they reside in the Windows
directory, and have an ".INI" suffix. Configuration files are read and written by
GetAppParam and SetAppParam.Int2 GetAppParam (CharPtr file, CharPtr section,
 CharPtr type, CharPtr dflt,
 CharPtr buf, Int2 buflen);Boolean SetAppParam (CharPtr file, CharPtr
section,
 CharPtr type, CharPtr value);

29
File specification dialog boxesIn traditional command-line programs, the user
identifies files by typing the file name along with a path specification. This method
is sensitive to typographical errors. In windowing systems, and in Vibrant, the user
is presented a list of available files, and is able to traverse the directory hierarchy
and specify files with file dialog boxes. GetInputFileName and
GetOutputFileName return the full paths specified by the user.Boolean
GetInputFileName (CharPtr fileName, size_t maxsize,
 CharPtr extType, CharPtr macType);Boolean GetOutputFileName
(CharPtr fileName, size_t maxsize,
 CharPtr dfault);Messages and alertsAt certain times a program
needs to send a message or warning to the user. The message may ask for certain
responses. The Message function provides this service by displaying a small
window on the screen.Int2 Message (Int2 key, char *format, ...);The key parameter
choices include MSG_ERROR, MSG_FATAL, MSG_OK, MSG_RC, MSG_ARI, MSG_YN,
MSG_YNC, MSG_OKC, MSG_POST, and MSG_POSTERR. (A message of type MSG_POST
does not wait for a response, and leaves the message window visible at the bottom
of the screen. This can be very useful for debugging program crashes.) The
answer returned may be ANS_NO, ANS_YES, ANS_OK, ANS_RETRY, ANS_CANCEL, or
ANS_IGNORE.The format and remaining arguments are passed to vsprintf. A
typical message, which prints a string and an integer, is shown below.Message
(MSG_OK, "The value of '%s' is %d", str, (int) val);The Beep function plays an
audible tone to alert the user. (Messages of type MSG_ERROR or MSG_FATAL will also
sound the beep.)void Beep ();Progress monitorsOne of the advantages of graphical
interfaces is that users feel like they are in charge of the computer program. A
consequence of this is that users worry (and sometimes "panic") if the program
does not respond almost

30
instantaneously. Operations that take on the order of a few seconds (e.g., reading
ASN.1 parse table files, connecting to network services) can be indicated by
changing the mouse cursor from an arrow to a wait indicator.void ArrowCursor
();void WatchCursor ();For longer operations (e.g., copying large files), where the
relative progress towards completion can be estimated, Vibrant provides graphical
and text progress monitors. The MonitorIntNew function takes the range of
values, and MonitorIntValue changes the graphical relative progress value. The
program should update the progress indicator every few seconds.MonitorPtr
MonitorIntNew (CharPtr title, Int4 n1, Int4 n2);MonitorPtr MonitorStrNew (CharPtr
title, Int2 len);Boolean MonitorIntValue (MonitorPtr mon, Int4 ival);Boolean
MonitorStrValue (MonitorPtr mon, CharPtr sval);MonitorPtr MonitorFree
(MonitorPtr mon);Several object loader functions call ProgMon during time-
consuming operations. The SetProgMon function allows these progress messages
to be intercepted and passed to a callback.Boolean ProgMon (CharPtr str);void
SetProgMon (ProgMonFunc func, VoidPtr data);Path to the executing programThe
ProgramPath function provides the full path to the executing program. It is
particularly useful for finding accessory files or directories that reside along with a
program.void ProgramPath (CharPtr buf, size_t maxsize);Application timerThe
Metronome procedure specifies an application procedure to be called 18 or 20
times per second (on the PC and the Macintosh, respectively) regardless of any
action by the user.void Metronome (VoidProc actn);

31
Viewing keystrokesThe KeyboardView procedure specifies an application procedure
to be called whenever the user presses a key on the keyboard, regardless of other
action to be taken in response to that event.void KeyboardView (KeyProc key);Error
interceptionUnder default conditions, errors detected by the NCBI software toolkit
libraries will be reported to the user (via the Message function), and will result in
program termination. A program can intercept errors, and prevent termination,
through use of the ErrSetOpts function.void ErrSetOpts (short actopt, short
logopt);The actopt parameter can be ERR_CONTINUE, ERR_IGNORE, ERR_ADVISE,
ERR_ABORT, ERR_PROMPT, or ERR_TEE. The logopt parameter may be ERR_LOG_ON,
ERR_LOG_OFF, or 0 to use the current error logging setting. The ErrShow function
will cause intercepted errors to be displayed, without terminating program
exectution.Memory managementAlthough ANSI C provides a malloc function, its
properties and behavior differ among various platforms. The CoreLib memory
functions use "far" pointers (VoidPtr). MemNew will always clear the memory block,
and will post a fatal error (which can be intercepted) if the system is unable to
allocate the requested memory, so checking for a NULL return value is normally not
necessary. MemGet will return NULL upon failure, allowing the program to try again
with a smaller request.VoidPtr MemNew (size_t size);VoidPtr MemGet (size_t size,
Boolean clear_out);VoidPtr MemFree (VoidPtr ptr);There are also functions for
MemCopy, MemMove, and MemFill, as well as functions that operate on "Handle"
types (which reference relocatable memory on Macintosh and PC/Windows
platforms).

32
Character and string functionsThe CoreLib string functions were written reluctantly,
to avoid unpleasant behavior when standard routines were passed NULL
arguments, and to overcome different pointer sizes on some PC platforms. The
character macros (e.g., IS_ALPHA, TO_UPPER) are robust against "illegal"
characters.The StringSave function copies a string to allocated memory.CharPtr
StringSave (const char FAR *from);StringRChr (fileName, DIRDELIMCHR) will
separate the file and path names returned by GetInputFileName or
GetOutputFileName.Portable method of obtaining argumentsMany programs
written for command-line driven systems (e.g., UNIX and DOS) need to be
extensively rewritten in order to run on windowing machines. The GetArgs
function allows arguments to be obtained in a portable manner, without regard to
the presence or absence of a windowing system.Boolean GetArgs (CharPtr
progname, Int2 numargs, ArgPtr args);The args array lists information on the
parameters desired. The Arg structure includes the prompt, default value, range,
whether the argument is optional, the command-line character tag, and the
argument type. Arguments can be Booleans, integers, real numbers, strings, input
or output files, or input or output data links (typed ASN.1 messages).On non-
windowing systems, arguments are processed from the command line. On a
windowing system, a dialog box is built, driven by the args array. GetArgs returns
FALSE if not all essential arguments were supplied, if any were out of range, or if
the user cancelled the argument dialog.The GetArgs and Message functions allow
procedural code to be written without regard to environment. Existing programs
can be quickly modified to run on a variety of platforms.

33
AcknowledgmentsI wish to thank a number of colleagues at the National Center for
Biotechnology Information who have contributed critical ideas to this interface. Jim
Ostell proposed the ideas of portability and of dealing with objects at a high level,
as close to the level of the desired parameters as is possible. He also made
suggestions that led to the concept of automatically positioning objects on the
window and within groups. Warren Gish, Greg Schuler, Tim Clark, Peter Karp, and
several others also made numerous useful suggestions and constructive criticisms.
Early applications in Vibrant, written by or for John Spouge, Jill Shermer, Charles
Beatty, Jonathan Epstein, Kenn Rudd and Jinghui Zhang, uncovered design
limitations that were quickly remedied. Jill Shermer assisted in porting Vibrant to
Motif.Vibrant will be published separately in the near future. You should reference
J. Kans (manuscript in preparation). Details on the internal organization of Vibrant
will be published as an NCBI technical report. Vibrant is supplied as-is, and is
currently "not being supported". (This means that I do want to get bug reports, but
won't address them with quite the same urgency as we would apply to the other
parts of the toolkit, upon which much of our database and research efforts rely.)
Questions or comments can be directed to
toolbox@ncbi.nlm.nih.gov.TrademarksThe mention of trade names, commercial
products, or organizations does not imply endorsement by the NCBI or the U.S.
Government.Apple and Macintosh are registered trademarks of Apple Computer,
Inc. Microsoft is a registered trademark and Windows is a trademark of Microsoft
Corporation. Motif is a registered trademark of the Open Software Foundation.

